Semantic Coding by Supervised Dimensionality Reduction

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Dimensionality Reduction

Dimensionality reduction is among the keys in mining highdimensional data. This paper studies semi-supervised dimensionality reduction. In this setting, besides abundant unlabeled examples, domain knowledge in the form of pairwise constraints are available, which specifies whether a pair of instances belong to the same class (must-link constraints) or different classes (cannot-link constraints)...

متن کامل

Dimensionality reduction for supervised learning

Outline Motivation Dimensionality reduction Experimental setup Results Discussion References Outline Motivation Supervised learning High dimensionality Dimensionality reduction Principal component analysis Random projections Experimental setup Algorithms and datasets Procedure Results Discussion Outline Motivation Dimensionality reduction Experimental setup Results Discussion References Motivat...

متن کامل

Dimensionality Reduction by Supervised Neighbor Embedding Using Laplacian Search

Dimensionality reduction is an important issue for numerous applications including biomedical images analysis and living system analysis. Neighbor embedding, those representing the global and local structure as well as dealing with multiple manifolds, such as the elastic embedding techniques, can go beyond traditional dimensionality reduction methods and find better optima. Nevertheless, existi...

متن کامل

Learning Through Non-linearly Supervised Dimensionality Reduction

Dimensionality reduction is a crucial ingredient of machine learning and data mining, boosting classification accuracy through the isolation of patterns via omission of noise. Nevertheless, recent studies have shown that dimensionality reduction can benefit from label information, via a joint estimation of predictors and target variables from a low-rank representation. In the light of such insp...

متن کامل

Closed-Form Supervised Dimensionality Reduction with GLMs

The problem of supervised dimensionality reduction is to combine learning a good predictor with finding a predictive structure, such as a low-dimensional representation which captures the predictive ability of the features while ignoring the “noise”. Indeed, performing dimensionality reduction simultaneously with learning a predictor often results into a better predictive performance than perfo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Multimedia

سال: 2008

ISSN: 1520-9210,1941-0077

DOI: 10.1109/tmm.2008.922806